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Abstract

The use of genetic algorithms for minimization of differentiable

functions that are subject to differentiable constraints is consid-
ered. A technique is demonstrated for converting the solution of

the necessary conditions for a constrained minimum into an un-
constrained function minimization. This technique is extended as

a global constrained optimization algorithm. The theory is applied

to calculating minimum-fuel ascent control settings for an energy

state model of an aerospace plane.

Introduction

Genetic algorithms for optimization (refs. 1 to 4) are nonderivative, nondescent, random-
search procedures for functional minimization, and their algorithmic structure is based on

biological concepts. Familiar descent-type minimization algorithms construct a sequence of

iterations, each of which modifies the independent variable vector from the previous iteration.

Cenetic algorithms, in contrast, construct a random sequence of generations in which a

population of codings of bounded independent variable vectors is modified according to analogs

of biological cross breeding and mutation. Rather than finalizing the value of the independent
variable in an iteration by satisfying a descent condition, the genetic algorithm employs a

"survival-of-the-fittest" heuristic that assigns a greater likelihood of appearing in the subsequent

generation to the population elements that have lower objective function values than those that

have higher objective function values.

A growing body of experimental evidence exists (refs. 5 to 8), supplemented by formal results

(ref. 9), which indicates that genetic algorithms (GA's) are reliable methods for approximately

determining the global minimum of a function. These algorithms lack a strict descent require-
ment, and their search operates on a population of iterates rather than on a single sequence of

iterates. These features help prevent GA's from becoming "stuck" at local minima. On the other

hand, GA's do not exploit derivative information in the search. This property, coupled with the

fact that the algorithms operate on fairly coarse codings of the independent variable vector

(rather than on floating point numbers), tends to limit the applicability of GA's to "rough-cut"
analyses rather than highly accurate ones. When highly accurate solutions are required, GA's

can be useful to generate initial guesses for gradient or Newton algorithms.

There have been a number of efforts in recent years to solve constrained optimization problems

using CA's. The most straightforward approach is to convert the constrained problem into
an unconstrained one by adding a penalty function on the constraint violation to the cost

function. Difficulties exist, however, which are associated with both "light" and "heavy"

penalty weightings, just as in the case of gradient-based optimization methods. When light

penalties are employed, they generally fail to accurately enforce the constraint. When extremely
heavy penalties are employed, that portion of the population which violates the constraints will

have a vanishingly small probability of reproducing itself in subsequent generations. This "die-

off" of illegal population elements results in an effectively smaller population (i.e., subsequent
generations will have many replicates of the legal subset of the population and vanishingly few

from the illegal subset). The resulting reduction in "genetic diversity" can adversely affect the
performance of the algorithm.

This paper demonstrates a CA-based approach for solving nonlinearly constrained optimiza-

tion problems. The method, which is simple to implement and generic to structure, is applica-

ble to problems in which the cost function and the constraints are continuously differentiable.

Moreover, this method can be adapted to calculate the global optimizer under nonrestrictive



assumptions.Thealgorithmicperformanceof the approach is explored in two numerical experi-

ments. The first experiment compares the performance of the approach with a penalty function
formulation for a simple test problem, and the second experiment extends the comparison to an

aerospace performance optimization problem.
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heavy penalty weight in numerical examples

user-defined volume
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drag coefficient

lift coefficient

aerodynamic moment coefficient

thrust coefficient

set of j times continuously differentiable functions

cost function

mean aerodynamic chord, ft

specific energy

set of equality constraints

Euclidean norm of distance between real value of best population element and

known optimal solution point

constraint function

gravitational acceleration, ft/sec 2

altitude, ft

specific impulse, sec

set ot' inequality constraints

indices

penalty weight in global minimization formulation

Lagrangian function

line defined for search volume refinement

mass, slug

number of population elements

successful Newton-Raphson convergence

number of free parameters

crossover probability

mutation probability

penalty function

first through third quartiles
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Subscripts:

CG

( )r
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Acronyms and

GA

KT

max

min

NR

dynamic pressure, lbf/ft 2

space of j-dimensional real vectors

equatorial Earth radius, ft

reference area, ft 2

thrust, Ibf

operator concatenating elements as vector

vector of free parameters

angle of attack, deg

system of equations for stationarity of Lagrangian function

deflection of jth control effector, deg

parameter defining transition from light to heavy penalty weight

fuel equivalence ratio

number of new local minima identified in global minimization iteration

Lagrange multiplier

number of inequality constraints

function returning Lagrange multiplier vector at optimum

step-size scale factor in Newton-Raphson algorithm

atmospheric density, slug/ft 3

user-specified search volume

constrained minimization function

center of gravity

pertaining to elevon deflection

pertaining to values returned by penalty function mimization

pertaining to thrust

partial derivative with respect to x

Abbreviations:

generic algorithm

Kuhn-Tucker conditions

maximum

minimum

Newton-Raphson algorithm

Symbols with superscript stars ( )*, tildes (-), plus signs ( )+ , and zeros ( )0 indicate

optimal value, active constraints, pseudo-inverse functions, and solutions returned from the

global optimization algorithm interates, respectively. A bar above a symbol (-) indicates an
admissible search value.
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Problem Representation for Genetic Solution

W'e treat the problem of minimizing the C ] function c(x) subject to C1 constraints; that is,

x* E T_n is sought such that

c(x*) < c(x) (1)

subject to

Fi(x*)= 0 (i e E) (2)

re(x*) > 0 (j e z) (3)

where $ and Z are the sets of indices of equality and inequality constraints, respectively.

Identifying the active inequality constraint index set as

7={j:jEZ, fj(x*)=0} (4)

and defining

h,,*)=-ec{:k(x*) : k EU } (5)

assume that f e _, p < n, and

If the above assumptions and equation (1) are true, then the Lagrange multipliers ,k* exist

(ref. 9) such that equations (2) and (3) are satisfied:

oa(×, A)IOx x*,_*= o (7)

A_>0 (j•Z) (8)

_fk(x )=0 (k eEuz) (9)

where

z:(×,_,)=c(x)- _ _,kfk(x) (10)
kEguI

Equations (2) and (3) and (7) to (9), subject to equation (6), make up a typical statement
of the first-order necessary conditions for a constrained local minimum, or Kuhn-Tucker (KT)
conditions.

If 3,* were known, a GA could be used to satisfy the KT conditions by solving for the global

minimum (zero) of

n

• (x, _*)= y_ ICx_(X,_*)1+ :_--_.lfj(x)l + _ Imin{0, fk(x)}[
i=I jEg kEZ

(11)

Note that, if one cast the first sum in equation (11) in the role of a cost function, then _(x, A*)

has the structure of a typical penalty function formulation, but it has the penalty weights in the
second two sums set to unity. The difference between the _(x, A*) and a penalty formulation

of the constrained minimization problem is twofold. The first difference is that in the typical
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casein which the solutionis not knowna priori, the optimal costis unknownand may be
nonzero.In this situation,it is wellknownthat theminimumof thesumof costand weighted
penaltytermswill varywith theselectionof thepenaltyweightingparameters.In equation(11),
however,all termsgo to zeroat x*; this situationresultsin thesolutionbeing invariantwith
respectto the nonunityscalingof the secondtwo sumsin equation(11). This property is
advantageousbecauseit eliminatesambiguityconcerningthe influenceof penaltyweightings
on the solution. The seconddifferenceis that the "cost" in equation(11) is a measureof the
constrained"stationarity"of the solution,ratherthan a directmeasureof the performance.

BecauseX* is not generallyknowna priori, considerestimating_,* in equation(11)during
executionof the GA. Define

I(x) = {j :j e Z,/j(x) < 0} (12)

as an index set of constraints which are active or violated at a given x, and

f(x) = vec {fk(x) : k c E UZ(x)) (13)

Now, estimate )_* by v(x), where

.i(x) =

0

(i E g)

(i

(i e -

(14)

and

=

where ( )+ denotes the pseudoinverse operator. Note that from equations (6) to (10),

(15)

.(x*) = (16)

The use of absolute values in equation (14) is an algorithmic measure to reject constrained

stationary points that fail to satisfy equation (8). The KT conditions are satisfied by solving

0[×, .(x)] = o (17)

The nonsmooth equation (17) is solved in the rest of the paper by using a GA to solve the

nonsmooth unconstrained minimization problem

x* = arg min k_[x, u(x)]
xEX

where X is the user-specified bounded volume over which the genetic search takes place:

X = {x: (Xi)mi n < x i < (Xi)max (i = 1,...,n)} (19)

In this context, the GA provides a robust means to identif3_ candidate local minima, in the sense
of finding points that satisfy the KT conditions. Furthermore, because the minimum value of

is known a priori, the GA can be stopped when ]_l is "sufficiently small."

This latter characteristic can be useful in practice. Identification of the appropriate generation

at which to terminate a GA minimization is an open research topic for general applications. For

this reason, the length of the GA runs in practical studies is often set by the patience of the

analyst or the availability of the computer resources. An objective threshold for termination can
significantly shorten run times without loss of confidence in the solution.
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Global Minimization Algorithm

The useof GA's to obtain solutionsto the KT conditions, as expressed by equation (17),

supplies the basis for a global optimization algorithm that is subject to the following two
assumptions. Assumption 1 (i.e., smoothness) states that

fi(x)

Assumption 2 states that solutions (x 0, A 0) of

F(x0, AO) = [ Ex(x°' A°) ] (x0) = 0 (20)

are regular at all x 0 E X- These assumptions lead to the following assertion, which is proved in

appendix A: If assumptions 1 and 2 are true, then there are a finite number of points x 0 E X at

which equation (20) is satisfied.

The global constrained minimization procedure essentially consists of identifying all the local
constrained inflection points {x 0} of £ and then accepting that point which returns the lowest

value of c(x 0) as the globally minimizing solution. By this assertion, the survey will be completed
after a finite number of identifications.

The set X can be surveyed for the global minimizer by a penalty function-based extension of

the approach for solving local necessary conditions. At the conclusion of a successful GA execu-

tion of equation (18) for a given X, there will be _ > 1 roots returned, {x 0} = {x 0, l = 1,..., _},
thus corresponding to local solutions of the necessary conditions. The problem of solving equa-
tion (18) can then be reposed to ensure that the roots {x °} are excluded from the solution by

replacing q2Ix, v(x)] with

• '(x, {x0}) = q2[x, v(x)] + Ka(x, Ix°}) (21)

where K > 0 is a user-chosen penalty weighting term and a is a function that becomes positive

when x is "close" to any point in the set {x 0} but is otherwise zero. For example,

= _" 1 (x E {ULI B(x°) }) (22)O"

( 0 (Otherwise)

where each B(x 0) is a user-defined volume surrounding the corresponding x 0. This approach can
be generalized for a global survey of X by using the GA to minimize the sequence of functions

@j(x) = @Ix, v(x)] + Kaj-1 (j = 1, 2,...) (23)

0oi(x) = o(x,U L__2o{XO}k)

(i = 0)
(24)

(i > 0)

where {x°}k is the set of local solutions identified when minimizing _k_l(x).

algorithmic structure is as follows:

1. Set j = 1. Set costo _ oc.

2. Generate a random population distributed over X-

The resulting
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3. Executea CA to minimize ff2j(x) from equation (23). If the GA is unsuccessful in finding

x such that _j(x) _ 0, go to step 8.

4. Collect {x°}j such that q2j(X)lxe{x0}j _ 0.

5. Set costj = min{costj_l,xe{x0}jmin c(x)}.

6. If costj <: costj_l, then set x ° = arg costj.

7. Setj=j+l. Go to step 2.

8. Ifj > 1, accept x 0 as global minimizer; ifj _ 1, abort.

The algorithm terminates when it is no longer able to identify values of x C X for which _j _ 0.
It is presumed that this occurs when all the local solutions have been identified and included in

the penalty term of _j's.

Note that the proposed algorithm would still terminate in a finite number of iterations even if

local nonunique roots of r exist, thus invalidating the assertion. The termination occurs because
the penalties K that exclude a growing union of finite subvolumes from _(. On the other hand,

the resolution of the algorithm to separately identify the closely spaced solution points depends

on the selection of the volumes B. Recall, however, that the motivation for selecting a GA over

a more accurate method is to robustly obtain a "rough-cut" answer. Therefore, it is not felt

that this latter concern prevents the algorithm from having practical utility.

The concept of using penalty functions to exclude known local minima from future iterations

of a global optimization algorithm has been established for descent-based methods (refs. 10

to 12). The penalty function employed in this work is similar to the "tunneling" technique
developed in references 10 and 11. In these references, the penalty varies smoothly toward

a huge value as x --_ xl. Penalty functions of this type can lead to numerical difficulties in

algorithms that use gradient information for defining a search direction. These difficulties are

avoided in the present approach because of the nondescent nature of the GA.

Numerical Experiments

This section describes the numerical experiments that explore the performance of the CA-

based constrained minimization procedure developed in this paper. Because the procedure
involves more complexity than formulations in which constraints are enforced via penalty

functions, the GA-based solutions of equation (18) are compared with the GA-based solutions

of a "generic" penalty function problem formulation of the form

X:pe n _- arg rain c(x) +
xEX p[x,A(x)]}

kEgUZ

(25)

where

when keg and

B-IAI (IAI > •)p[x, fk(X)] = b. Ifkl (Ifkl -<•)
(26a)

B. IAI (-A > •)p[x, fk(x)] = b. max{0,--fk} (--flc <--•) (26b)

when k E Z. The parameters • > 0 and B _> b > 0 are to be chosen by the user. This

formulation allows heavy penalties that strongly violate constraints and light penalties that
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"nearly" complywith constraintsto be appliedto x. Heavy penalties could be appropriate to

reject the "artifact" local minima in equation (25) which would not approximately correspond
to the solutions of the KT conditions for the underlying problem. The provision for lighter

penMties within the e-defined region of light constraint penalty is intended to provide a subset

of X in which the variation of c(x) is not dominated by the penalty terms.

The GA used in this study was a simple GA, which was similar to that used in reference 8;

however, it included a modification that was suggested in reference 13. In this modification,

the best-valued population element from each generation was guaranteed survival into the next

generaiion. The real-valued independent variables were coded as 8-bit binary strings such that

basel0(string)
x(string) = Xmi n + (Xmax - Xmin) 28 - 1 (27)

thus yielding a resolution of roughly 0.4 percent over the range of X for each problem. In both
experiments, the string representations for the vector-valued independent variables were formed

by concatenating the 8-bit substrings for each scalar. Key parameters affecting the performance

of a GA (ref. 3) are population size Npop, crossover probability Pcross, and mutation probability

Pmutate. All runs in this study were made with Npop = 30 and Pcross = 0.95, as per guidelines
from reference 3. This simple CA with the modification from reference 13, however, appears to

benefit from a more aggressive mutation rate than the/)mutate = 0.01 that was recommended in
reference 3. Some adjustment of this parameter was done in the experiments below.

The first experiment (denoted example 1 in the table titles of tables 1 to 5) compares the

performance of the generic GA penalty function approach with that of the GA solution of

reference li, henceforth referred to as a KT solution, for the problem

c(x ,x2)--x7+

f(xl,x2) = Xl - x2 - 2 = 0

with the search volume

j(-- {-5 < xl _<5;-5 _<x2 < 5}

Monte Carlo experiments of 100 runs, each consisting of 100 generations, were performed

for the KT formulation (ref. 11), and for the penalty formulation for a number of combinations

of {B, b, c, Pmutate}. The performance results are given in tables 1 to 5. Table 1 displays the
KT performance for Pmutate = 0.01, 0.03, 0.05, 0.07, and tables 2 to 5, in turn, display the

CA penalty function results for each value of Pamtate. The performance of the GA in these

experiments was characterized by the number of runs that successfully satisfied error thresholds

of the form errx, <_ k, where errx, is the Euclidean norm of the distance between the real value

of the best population element and the known optimal solution point x* -- (1, -1). Tables 2 to
5 also display the median number of generations necessary for the successful runs to cross the
thresholds.

The comparison of table 1 with tables 2 to 5 immediately reveals that the KT formulation was

generally more successful in finding the optimum for this problem and, when successful, tended
to find it more quickly, except in the case of Pmutate _ 0.01. Note that, both for the KT and

penalty approaches, Pmutate = 0.05 and 0.07 returned significantly better performance than the

lower _alues. The case Pmutate = 0.07 did not show any significant advantage over Pmutate : 0.05

in the penalty function runs, and it actually resulted in a small performance degradation in the
KT experiment. If attention is restricted to the penalty results, then a closer examination of

tables 4 and 5 suggests that all the combinations of small b (b = 10) and relatively large c
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(e= 0.1and0.2) tend to outperformotherparametercombinations,particularly for successin
the errx, < 0.1 criterion.

The success of these parameter combinations, which are cases 8, 9, 17, 18, 23, and 24

of tables 4 and 5, can be loosely interpreted in terms of the processes operating in the GA.
Although the comparatively heavy B penalties result in a population being "killed off" outside

the region Ill < e, the high mutation rates tend to introduce enough "new genetic information"

to prevent the population elements x from stagnating; that is, they accumulate away from the

actual minimizing value of x simply because other population elements fall outside Ill < e and

were eliminated by the B penalty. Similarly, the combination of larger values of e and low b

was advantageous because it assigned more volume in the parameter space to the population
elements that could be expected to survive through enough generations to exchange meaningful

amounts of information through crossover operations.

The second experiment (denoted Example 2 in the table title of table 6) extends the com-

parison of KT and penalty function algorithm performance to a more challenging optimization

problem: selecting optimizing altitude and control settings for an energy-state approximation

(ref. 14) of the minimum-fuel ascent to orbit for the "Langley Accelerator" (ref. 15) aerospace

plane concept. In this experiment, a thrust-vectoring capability is added to the model. The
energy-state approximate solution for this problem is calculated by performing algebraic mini-

mizations for altitude and controls along a locus of specific energies E leading to orbital injection.

This experiment considers the algebraic minimization at a single value of E. The search variable

ranges are

-1 < ct _< 12

20000 < h < 30000

_EX= --20 < 5e <_ 20

--20 _ (5T _ 20

0.5 __<_ _< 1.5

and the cost function is -dE�din, where m is mass. At a given value of E, the nondimensional
cost is expressed as

c(:_) = V(E,h)Isp(r_)[cos(Sr+a) CD(C_'Se)]CT(7?) E1 (28)

where V = v/2g(E - h) and g is the gravitational acceleration, which is assumed to be constant.

Expressions for the coefficients Is;p and C( ) and for all constants in this problem are given in
appendix B. Two equality constraints appear. The first constraint is a vertical acceleration
balance

m9 q(E, h)S CL(a, 5e) + CT(rl) sin(_ + ST) + rn g = 0 (29)rEarth

where S is the reference area. The second constraint is a pitch moment balance

1
{CM(a, Se)a+xca[CD(a, Se)sina + CL(a, Se)COSa]} - sin5 T = 0 (30)

CT(rl)ZT

where q = pV2/2 is the dynamic pressure and XCG and XT are the moment arms. There is also

an inequality constraint on dynamic pressure, which is

1 - _q _> 0 (31)
qInax



where qmax --- 2000 lbf/ft 2. The specific energy (E = 105 if) considered here approximately

corresponds to flight at Mach 2.

In this second example, KT and penalty function versions of the problem were again compared

in the Monte Carlo experiments. In this case, each experiment consisted of 100 trial GA runs,

with each run having 600 generations. Two evaluation criteria were employed to compare the

quality of the KT and the penalty results. The first criterion was the distribution of values of

• 1(2) from equation (23); these values were returned by the populations of final-generation R's
from the KT and the penalty run sets. The second criterion informally quantified the usefulness

of the GA results as initial guesses for high-accuracy Newton-type methods. This quantification

was done by using the final-generation _'s from the GA's as initial guesses for a restricted-

step Newton-Raphson (NR) algorithm that solved a system of equations equivalent to the KT
conditions for this problem:

= _ (._r,+_ _2_i(_*) {[I - x x ) JCx._i + )2 _--0 (i = 1, ..., 5) (32)

where f(_) is the concatenation of equations (29) to (31), with equation (31) treated as an

equality and )T(_) __ [fT(5:) 00]. At the optimal solution,

(yc,)T= [1.0211, 20385, 0.1789, 0.7182, 0.7688]

where the treatment of equation (31) as an equality constraint is justified because the value of

its Lagrange multiplier is positive at R*, thus taking on the value of Aqmax = 6.1866.

The NR iteration took the form

(33)

where [Tz(Xk) was approximated by a first-order forward difference formula, and the line search

parameter (k was chosen by the logic, iterated over j = 0, 1, ..., as

(_k)0 = min{2_k-1, 1}

(_k)j = { (_k)j/2Abort

I
(g[5:k -b (_k)jSk] __ g(Xk-1))

J((_k)j _--_min)

(34)

where _min was chosen as 10 -7. The algorithm was considered to have converged if the criterion

Y':_l5 _i(:_) < 10 .4 was satisfied in 100 iterations or fewer.

First, GA minimization of the KT formulation was considered. A Monte Carlo set of 100

GA runs minimizing _l(x) over X was calculated. Figure 1 displays the resulting distribution
of kol values, referred to as KT errors. The median ¢zl for these runs is _1 = 0.3821, which

corresponds to
-T

(x0)median = [0.8353, 24 980, --1.9608, 8.8627, 0.7745]

An examination of the final population elements from the set of trims revealed that, rather

than clustering around a point, the _e and @ components of the _'s were distributed along a

line. This distribution is not surprising, given the correlation in the effects of 6e and @ on
pitching moment. There was also a significant linear trend of the deflections with a. Figure 2

displays relationships.

Figure 3 gives the corresponding distribution of a and 7? as functions of h. The trends in

these variables are not as strong as those seen in the relations among a, 6e, and fiT. Part of the

reason for this is that the qmax constraint (eq. (31)) only weakly affects the performance for this
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model,eventhoughq at the maximum altitude is little more than one-half of qma×- Note that

the trends in figure 3 are explained by the reduction of q with the increase in altitude. A larger
c_ is called for because of the dimunition in lift, and a slightly larger _7is called for to balance

the reduction in cos(@ + a) and the increase in CD(a, 6e) in equation (28).

In 100 trials, the lowest value of _1 achieved was no better than 0.0979; this occurence can be

explained by the properties of _1 for this problem and by the characteristics of the crossbreeding

and reproduction operations in GA's. Near its minimum, _1 is least sensitive along the locus

whose projection into (c_ x 5e x @)-space is depicted in figure 2. In the reproduction operation
of the GA's, population elements away from this locus have significantly higher _1 values and,

therefore, are assigned a significantly lower probability of surviving into the next generation. The

GA "crossbreeding" operation modifies pairs of population elements by swapping substrings from

binary codings of both elements. When "near-optimum" values of _1 are distributed along a

surface, rather than a point, the swapping generally results in moving the modified elements

away from the surface. These elements, in turn, lose reproduction probability and disappear
from the population.

To address this difficulty, 5e and 6T were transformed to tailor the search volume X to the

behavior of _1 such that

5e = ge(C_) + 5e 5T = @(a) + 5r (35)

where the coefficients in

re(a) = (Cl)eO_ + (C2)e /
(a6)feT( ) (Cl)T + (C2)r

were Calculated by least-squares fits over the data from the Monte Carlo experiment. The values
for the coefficients and for the residuals measure

100
i=I

were (in degrees)
(Cl)e = 288.2072 (Cl)T

(C2)e = -4.2551 (C2)T

se = 3.6505 ST

The new search vector was chosen as _T = [a, h, 5e, ST,
as

= -291.4726

= 8.6639

= 7.9568

7], and the search volume was redefined

0.1127 < a _ 2.7832

20227< h 531356

-3.6505 < 5e _ 3.6505

-7.9568 < 5T 5 7.9568

0.7381 < _ _ 0.8194

The bounds in _ for c_, h, and _7were chosen as the sample mean values +1.5 times the sample

standard deviation. The bounds on 5c and 5T were -t-se and +ST, respectively.

Again, a Monte Carlo set of 100 runs was performed. Figure 4 displays the distribution of

gt1 for this experiment. The median value of kO1 for this set of runs was (_l)median = 0.0627,

and the lowest value was (kOl)best = 0.0074, with the corresponding control vectors

-T
(x1)median -----[1.0867, 23064, 1.9988, 1.2944, 0.7699]
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(_T)best = [1.2543,25770,2.1832,1.8149,0.7722]

expressed in the original _ coordinates. Figure 5 gives the distribution of _, be, and _T, along
with the boundaries of _, shown as straight lines.

The GA-generated KT solutions were next used as initial guesses for the NR algorithm.

Eighty-two of the NR runs converged from the first set of 100 GA solutions, based on optimization
over tile full X- Ninety-eight of the NR runs converged of the second set, based on optimization

over the restricted _. For comparative purposes, the NR algorithm was executed for 100 initial

guesses that were chosen from a uniform distribution over X. Twenty-three of the NR runs

converged in this case. We infer that the use of a genetic algorithm to minimize 91 provided an
effective means of generating an initial guess for the NR algorithm for this example.

Once the performance of the KT approach for this problem was established, the penalty

scheme (eq. (25)) was applied to the problem of minimizing equation (28) subject to equa-

tions (29) to (31). Sequences of 100 Monte Carlo runs were performed with Pmutate = 0.05 for
the various penalty parameter combinations from the first example. Each of the sequences of

runs was begun from the same random number seed. Because cases 1 to 3 and 10 to 12 (all
of which used the penalty weighting b = 104) performed poorly in the first example, they were

eliminated from consideration in this experiment.

Table 6 summarizes the algorithm performance for these cases. This table displays the
minimum, first through third quartile, which is displayed as Q1,Q2,Q3, and the maximum

values of the KT cost function 91 which is evaluated at the penalty function solution points. In

addition, table 6 displays the number of successful NR convergences, denoted by Nsucc, achieved

using the solutions as initial guesses. As was observed in the first example, cases 8, 9, 17, 18, 23,
and 24 tended to provide better results than those of other parameter combinations, in the sense

that _1 errors tended to be smaller and Nsucc tended to be larger than with other combinations.

Cases 23 and 24 were the most successful pair in producing good initial guesses for the NR
runs. The slight advantage seen in these latter two cases may be attributed to their employment

of the smMlest B penalty weight in the study. Because of the small B weight, the nonconstraint-

compliant population elements are granted a somewhat higher likelihood of reproduction and

are, thus, more likely to enhance the "genetic diversity" of the population. Nonetheless, the most
striking characteristic of the data in table 6 is that even the best results from the penalty runs

compare poorly with the results of the KT experiments. The former solutions are less "close"

to the optimum than those of the latter, in the sense of vanishing 91, and they did not provide

particularly reliable initial guesses for subsequent NR solutions.

Figure 6 displays the detailed _1 cost distribution for case 23. Figure 7 gives the distribution

of _, be, and @ from these runs, along with the optimal solution and the case 23 solution that

returns the lowest value of the penalty-based cost function from equation (25). Note that this

distribution is markedly different from those in figures 2 and 4. Although the best penalty-based
solution,

-T
(Xpen)best = [1.1926, 233017, 0.2354, 0.8630, 0.7591]

is fairly close to :_*, the overall trends of the penalty solutions are significantly different from

the KT solutions. Comparing figures 2 and 4 with figure 7, note that there is a strongly linear
trend between @ and be in all sets of solutions, but the slope of the penalty solution trends is

opposite in sign to the KT solution trends and much different in slope magnitude. Also, the
variation of a in the penalty function solutions is much smaller than that in the KT solutions.

12



Thesolution_* wastentativelyverifiedasa globaloptimizerfor thisexamplebyperforming
100ofthe 600-generationCA runsthat minimize_2 fromequation(23),usingthe_ coordinates
fromequations(35)and (36),and

/ O_ _ O_*

h = h*

_(_*) -, - -,= ge-Se_--ge_-_e+Se

5T- sT <_ 5T <_ 5T + sT

77= 77*

This form of _2(_) was intended to deny the locus of the (Se, ST) pairs from the k91 search to the
CA. The best value of k_2 from this set of runs was 1.2715. Because this number is considerably

higher than the worst value of _1, we infer that no other local minima were identified and,

hence, _* is the global minimizer.

Summary of Results

This paper has examined the use of a simple genetic algorithm to solve minimization problems

for differentiable functions that are subject to differentiable equality and inequality constraints.

The first-order necessary conditions for a constrained minimum have been adapted to convert a

given constrained minimization problem into an unconstrained minimization of a nonsmooth
function whose minimum value is zero and whose minimization is equivalent to satisfying

the first-order necessary conditions for the original problem. The unconstrained nonsmooth

minimization is carried out using the genetic algorithm.

This solution approach was exercised and compared with a penalty function formulation

for two constrained minimization problems. In the first problem, the approach significantly

outperformed the penalty function technique over a range of penalty function tuning parameters.
In the second problem, the approach provided significantly more accurate solutions than the

penalty function technique, despite numerically challenging features, such as correlated control
variables.

NASA Langley Research Center

Hampton, VA 23681-0001

March 14, 1994
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Appendix A

Proof of Assertion

Assumethat an infinite numberof solutionsxk exist in X with corresponding values of

*_k = u(:(k) from equation (15). This assumption and the fact that X is closed and bounded

implies that {xk} will contain an accumulation point Y( E X- Construct a sequence of points

xk --* "x, and consider variation of [[F[_, v(:_)][[ along the lines

f_k(a) = (1 - a)'_k + a_ (0 < _ _< 1) (A1)

By the extreme value theorem, for each k, there exist a k that satisfy

_k = max Ilr{_(a), v[_(_)] } 11 (A2)

As k-_ oo,

/ollr(x)ll - } (Aa)

If _k -¢ 0 as k --* ec, assumption 1 of the assertion is violated. Because of assumption 1

Xk --<MIIxk -_11 (A4)

for some constant M > O. This implies that _k -_ 0 as k -_ oe, so that

< n (t5)
rank[ 0x J x=_

from equation (A3). Equation (AS), however, implies that there exists 07` = [Sx T, 5A T] # 0 such
that

vr(x, x)l_,_=v(_)o = 0 (A6)

which violates assumption 2. This contradiction proves the assertion.
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Appendix B

Smoothed Aerospace Plane Model

This appendixdescribesthe smoothanalyticaladaptationof the piecewiselinear tabular
"LangleyAccelerator"vehiclemodeldescribedin referencei5. The followingaerodynamicand
propulsioncoefficientexpressionsareintendedfor flight conditionsbetweenMach2and 2.5:

CL(a, fie) = -0.0062 ÷ 0.0242a - 0.000676e + (0.896 × 10-7)a_e

Cv(a, _e) = 0.0261 - 0.000206a + 0.000526a .2 - 0.000025a_c + 0.000012452

CM (a, _e) ----0.00102 -- 0.0032a - 0.0002a 2 + 0.0005_e

Isp(rl) = 3713 + 1208r/- 1740r/2

CT(rl) = 0.0062 + 0.1316r/-- 0.0182712

where all angles are expressed in degrees. The variation of these quantities with Mach number

has been ignored for simplicity. Figures 8 to 12 display the errors between the above analytical

expressions and the linearly interpolated values from reference (22); the values are normalized
by the latter and expressed as percentages. The vehicle-related constants appearing in the text
are as follows:

S = 3603 ft 2

_=80 ft

XCG = 14.01 ff

x T = 61.99 ft

m --- 4800 slugs

Figure 13 displays the geometry of the vehicle. Finally, the atmospheric density model for this
study is

p(h) = PO exp(-13h)

where P0 = 0.002378 slug/ff 3 and _ = 0.0000547 1/ft.
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Table1. Effectof Mutation Probability
on KT Performancein Example1

Successes(mediangenerations)

Pmutate errx* _< 0.10 errx, _< 0.05 errx, < 0.01

0.01
.03
.05

.07

70(12)

91(16)
98(14)

98(15)

49(18)
75(23)
83(31)
78(25)

38(28)

72(41)
64(39)

64(42)

Table 2. Penalty Function GA Performance for Pmutate _- 0.01 in Example 1

Case B

1 1020

2 1020

3 1020

4 1020

5 1020

6 1020

7 1020

8 1020

9 1020

10 106

11 106

12 106

13 106

14 106

15 106

16 106

17 106

18 106

19 104

20 104

21 104

22 104

23 104

24 104

Successes (median generations)

c errx, _< 0.10

104 0.05

104 .10

104 .20

102 .05

102 .10

102 .20

101 .05

101 .10

101 .20

104 .05

104 .10

104 .20

102 .05

102 .i0

102 .20

I01 .05

101 .I0
101 .20

102 .05

10 2 .10

102 .20

10 ] .05

101 .10

101 .20

2(5)
3(29)
3(9)

11(8)
15(8)
12(18)
9(10)

10(12)
12(14)
11(9)
6(4)
9(5)

10(12)
10(8)
13(10)
10(24)
6(8)

14(9)
3(2)
6(16)
3(2)
9(5)

10(6)
17(11)

errx, < 0.05

1(20)
1(29)
2(64)
8(19)

13(25)
9(41)
8(30)
7(7)
7(59)
6(34)
3(9)
5(9)
7(19)
6(24)
7(27)
8(28)
6(22)
9(33)
1(60)
4(43)
1(23)
6(29)
5(25)

10(22)

errx, < 0.01

1(20)
1(29)
2(64)
6(38)

11(37)
9(41)
7(62)
6(42)
6(66)
6(34)
3(11)
5(57)
7(43)
6(28)
6(44)
7(29)
5(34)
9(45)
1(60)
4(46)
1(23)
6(34)
5(25)

10(30)

17



Table3. PenaltyFunctionGA Performancefor Pmutate = 0.03 in Example 1

Case B

1 102°

2 1020

3 1020
4 1020

5 1020

6 1020

7 1020

8 1020

9 lO 2°

10 106

11 106

12 106

13 106

14 106

15 106

16 106

17 106

18 106

19 104

20 104

21 104

22 104

23 104

24 104

E

10 a I

10_ I
10_ I
10L t

10z [

10_ [

10 _ I

lO _ I

lO _ I

10_ I

10 a I

10q [

10_ I

10z I

lO_ I

lO l I

101 !

101

10 2

10 2

102

101

101

101

Successes (median generations)

e errx, < 0.10 errx, < 0.05 errx, < 0.01

0.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

15(51)
15(40)
18(52)
21(38)
27(39)
34(28)
29(34)
29(51)
35(35)
26(39)

8(52)
lO(62)
13(73)
14(4o)
18(46)
23(46)
23(62)
20(55)
27(57)
20(54)

8(52)
lO(62)
13(73)
13(59)
17(56)
22(49)
23(62)
19(58)
27(57)
19(56)

27(31)

28(28)

27(59)

39(36)

37(49)

29(37)

34(54)

41(37)

26(51)

28(44)

33(39)

33(56)

37(38)

48(60)

22(53)
19(56)
19(66)
28(56)
27(62)
22(52)
27(63)
28(64)
18(68)
20(62)
23(60)
28(66)
26(66)
30(74)

21(56)
18(62)
19(66)
28(56)
27(62)
22(54)
27(67)
26(64)
a8(68)
20(62)
23(60)
28(66)
26(68)
28(76)
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Table4. PenaltyFunctionGA Performancefor Pmutate --_ 0.05 in Example 1

Case B

1 1020

2 1020

3 102o

4 1020

5 1020

6 1020

7 1020

8 1020

9 1020

10 106

11 106

12 106

13 106

14 106

15 106

16 106

17 106

18 106

19 104

20 104

21 104

22 104

23 10 4

24 104

b

104 0.05

104 .10

104 .20

102 .05

102 .10

102 .20

101 .05

10 ] .10

101 .20

104 .05

104 .10

104 .20

102 .05

102 .10

102 .20

101 .05

101 .10

101 .20

102 .05

102 .10

102 .20

101 .05

101 .10

101 .20

Successes (median generations)

errx, _< 0.10

28(52)

34(51)

39(48)

36(39)

47(60)

53(62)

52(46)

55(44)

66(50)

42(57)

33(52)

33(40)
41(48)

56(56)

47(59)

38(58)

errx, _<0.05

15(43)
23(59)
24(64)
26(56)
33(60)
34(76)
39(48)
37(69)
49(71)
24(59)
24(65)
27(50)
27(62)
39(72)
35(75)
26(70)

errx, < 0.01

13(56)
21(71)
23(59)
23(56)
29(60)
30(76)
38(54)
32(72)
43(67)
21(58)
21(67)
24(54)
25(48)
36(72)
30(68)
24(66)

50(46)

66(44)
48(45)

40(44)

49(45)
45(51)

62(47)

60(56)

34(64)
40(56)
38(56)
27(64)
37(59)
29(51)
42(50)
38(70)

26(64)
37(63)

35(59)

25(64)

35(59)

27(54)

38(55)

34(70)
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Table5. PenaltyFunctionGA Performancefor Pmutate = 0.07 in Example 1

Case B

1 1020

2 1020

3 1020

4 1020
5 1020

6 1020

7 1020

8 1020

9 1020

10 106

11 106

12 106

13 106

14 106

15 106

16 106

17 106

18 106

19 104

20 104

21 104

22 104

23 104

24 104

b

104

104

104

102
102

102

101

101

101

104

104

104

102

102

102

101
101

101

102

102

102

10 t

101

101

Successes (median generations)

e errx, < 0.10 errx, < 0.05 errx, < 0.01

0.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

.05

.10

.20

35(52)
39(58)
38(43)
45(50)
40(46)
45(51)
47(49)
62(54)
57(38)
32(36)
41(62)
40(58)
56(48)
44(64)
49(50)
48(48)
55(38)
61(46)
39(57)
34(55)
48(52)
44(38)
57(40)
67(37)

18(53)
22(71)
20(52)
29(65)
27(69)
26(64)
33(46)
37(66)
38(43)
17(62)
25(75)
22(66)
28(46)
23(74)
34(66)
35(57)
24(36)
39(59)
18(67)
20(57)
27(62)
31(53)
38(58)
44(60)

15(60)
20(76)
20(52)
28(65)
27(69)
26(66)
29(50)
32(73)
38(48)
16(63)
25(75)
22(66)
27(49)
21(74)
33(74)
27(63)
22(40)
33(61)
16(69)
18(62)
25(65)
29(61)
36(58)
42(62)
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Table6. Summaryof PenaltyFunctionGA Performancefor Example2

Case

4
5
6
7
8
9

13
14
15
16
17
18
19
20
21
22
23
24

B

1020

1020

1020

1020

1020

1020

106

106

106

106

106

106

104

104

104

104

104

104

I

b c

102 0.05

102 .10

102 .20

101 .05

101 .10

101 .20

102 .05

102 .i0

102 .20

101 .05

101 i .10

10 j I .20

10z I .05

i0z I .10

10z I .20

101 I .05

101 I .10

101 I .20

KT performance distribution

min Q1 Q2 Q3 max

3.782

8.205

4.402

4.949

1.807

2.919

3.782

8.205

4.402

4.949

1.807

2.919

3.782

4.198

2.801
4.751

1.854

3.387

22.810

25.862

20.192
13.055

12.340

11.700

22.810

25.862

20.889

13.496

12.340

11.700

23.666

29.236

24.732

13.671

12.705

11.652

34.852

35.294

34.863

20.162

18.999

21.318

34.320

35.294

35.167

20.162

18.999

21.318

34.756

37.646
37.204

20.700

20.948

20.313

44.911

53.612
47.886

28.005

28.049

26.641

43.926

53.612

48.078

28.005

28.049

26.895

44.386

51.673

46.266

29.621

27.805

27.335

107.101

101.633

93.153

56.846

59.982

46.687

96.346

101.633

93.153

56.846

59.982

46.687

91.330

97.060

95.789

57.700

59.982

43.526

Nsucc

27

29

36

45

48

34

28
28

34

43

49

35

38

33

36

43
53

38

21



12-

0_

"5
CD

E

z

One outlier at 4.5

KT error

Figure 1. Distribution of KT error for first aerospace plane Monte Carlo experiment.

22



20t15

10

5
o')

_0-

-5-

-10--

-15 -

-2O

[]

_3z]

_n

Optimum _-_ o

[][]

m 20-

c D

% _5-

°;,
m_ [] _:_ 5

9 _Lo
/mODD []

Optimum _ [] _ o _ -10

[] []c3[]

-15 -
[] []

, j m-_ -20 -

1 2 3

cq deg

,_ i i i!
0 1 2 3 0 -10 0 10

c_, deg 8e, deg

Figure 2. Distribution of a, 6e, and 5T for first aerospace plane Monte Carlo experiment.

2o

(D
7O

3 _:_ .80 []

[]
[] [] []

,-,-.-41]

[] _ .79 m

2 [] []ram [] [] []

[] [] ml rm gTq-q

[] [] [] [] .78

[] _- rqmm 2] I_ m r'l [] 2]E] rlTITq

1 __ []
[] [] _ [] [] [] .77 _••memmmrrmm_rm

[_rqrq [][]

[] []
q23 .76

0

_'_ , i _ _ i .75 , i , _ --I

20 22 24 26 28 30 x 103 20 22 24 26 28 30 x 103

h, ft h, fl

Figure 3. Distribution of a, h, and r/for first aerospace plane Monte Carlo experiment.

23



15

0 .05 .10 .15 .20 .25

KT error

Figure 4. Distribution of KT error for refined aerospace plane Monte Carlo experiment.

"t2

2O

15-

10-

5-

0-

-5-

-10 L
-15

-20
0

20

15

10
l

Optimum /

_" _ 0
. r.,O

.f -5

J

-10

-15

, , -20 -,4", , , , , '
1 2 3 0 i 2 3 0 10

c¢, deg cq deg 5e, deg

20 ]
I

"- 15 4 \.

_'\ 10 _ \

-\ i /k"[.. ram%

q_. [] - ,. '"\ i

Optimum "-.. -.. -10 i Optimum',,

-15

-20 J-q" ,

-10

Figure 5. Distribution of c_, 5e, and 3T for refined aerospace plane Monte Carlo experiment.

24

I

2O



12

10

03

.[.-

"5

E
--I

z

0 10 20 30 40 50

KT error

i
I

6O

Figure 6. Distribution of KT error for penalty formulation aerospace plane Monte Carlo

experiment.

20i20 i _ optimum

-0 "0 0 ~

-1°-1 _b: -lo-
-15 _r_c -15

-20 , _ , , -20 --',b,
0 1 2 3 0

Penalty-based

Penalty-based optimum

_,deg a, deg

20-

10-

5-

0-

_52

-10 2

-15-

O')
C:D

Penalty-based optimum

Optimum

I , I -20- -$" , , _...... 7
1 2 3 -10 0 10 20

5e, deg

Figure 7. Distribution of c_, 5e, and 5T for penalty function aerospace plane Monte Carlo
experiment.

25



8e, deg ._o
o

!0 I

i 1/tl

g

o_,deg

c_,deg

-_ 2 4 6 8
_ 10

' """ _-20

_j _
8e, deg/

/t...

12

t-
(D

cY

Figure 8. CL percent error in aerospace plane model.

8e, deg .Io

0

co, deg

40 2 4

"T

k

10

cq deg

6 8 10

°_

,_//,r.. _ Be, deg

12

Figure 9. C D percent error in aerospace plane model.

26



e, deg
5e, deg _ .202 4 6

_ 5o, deg

/

/a, deg

Figure 10. C M percent error in aerospace plane model.

10-

_

_

-5-

E
-10-o

Q.

Q- -15-
03

-2O-

J

-25-

-30

0
I I I I I I I

•2 .4 .6 .8 1.0 1.2 1.4

q

Figure ll. Isp percent error in aerospace plane model.

27



20-

Q.

10-

_

-10 -

-20 I I I I I i I
0 .2 .4 .6 .8 t .0 1.2 1.4

TI

Figure 12. C:r percent error in aerospace plane model.

S Center of gravity

 omen,re,erencece 
I" XT "

Figure 13. Aerospace plane geometry. Subscript CG indicates center of gravity.

28



Form Approved

REPORT DOCUMENTATION PAGE OMB No, 0704-0188
i B i ii

Public reporting burden for this collection of in_'oTmatlonis estimated to average 1 hour per reSponse, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je_erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1994 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Constrained Minimization of Smooth Functions Using a Genetic
Algorithm WU 506-59-61-01

6. AUTHOR(S)
Daniel D. Moerder and Bandu N. Pamadi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

W'ashington, DC 20546-0001

8. PERFORMING ORGANIZA'I_ION

REPORT NUMBER

L-17221

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TP-3329

ll. SUPPLEMENTARY NOTES

Moerder: Langley Research Center, Hampton, VA; Pamadi: ViGYAN, Inc. Hampton, VA.

|1 I

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 18

13. ABSTRACT (Maximum 200 words)

The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable
constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions
for a constrained minimum into an unconstrained function minimization. This technique is extended as a
global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control
settings for an energy state model of an aerospace plane.

14. SUBJECT TERMS

Genetic algorithms; Constrained optimization; Minimization; Energy-state methods

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

MSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

29

16. PRICE CODE

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-18
2g8-102




